Long-term effects of nitrogen fertilizer use on ground water nitrate in two small watersheds.
نویسندگان
چکیده
Changes in agricultural management can minimize NO3-N leaching, but then the time needed to improve ground water quality is uncertain. A study was conducted in two first-order watersheds (30 and 34 ha) in Iowa's Loess Hills. Both were managed in continuous corn (Zea mays L.) from 1964 through 1995 with similar N fertilizer applications (average 178 kg ha(-1) yr(-1)), except one received applications averaging 446 kg N ha(-1) yr(-1) between 1969 and 1974. This study determined if NO3-N from these large applications could persist in ground water and baseflow, and affect comparison between new crop rotations implemented in 1996. Piezometer nests were installed and deep cores collected in 1996, then ground water levels and NO3-N concentrations were monitored. Tritium and stable isotopes (2H, 18O) were determined on 33 water samples in 2001. Baseflow from the heavily N-fertilized watershed had larger average NO3-N concentrations, by 8 mg L(-1). Time-of-travel calculations and tritium data showed ground water resides in these watersheds for decades. "Bomb-peak" precipitation (1963-1980) most influenced tritium concentrations near lower slope positions, while deep ground water was dominantly pre-1953 precipitation. Near the stream, greater recharge and mixed-age ground water was suggested by stable isotope and tritium data, respectively. Using sediment-core data collected from the deep unsaturated zone between 1972 and 1996, the increasing depth of a NO3-N pulse was related to cumulative baseflow (r2 = 0.98), suggesting slow downward movement of NO3-N since the first experiment. Management changes implemented in 1996 will take years to fully influence ground water NO3-N. Determining ground water quality responses to new agricultural practices may take decades in some watersheds.
منابع مشابه
Variation in riverine nitrate flux and fall nitrogen fertilizer application in East-central illinois.
In east-central Illinois, fertilizer sales during the past 20 yr suggest that approximately half of the fertilizer nitrogen (N) applied to corn ( L.) occurs in the fall; however, fall fertilizer N sales were greatly reduced in 2009 as wet soil conditions restricted fall fieldwork, including fertilizer N applications. In 2010, we observed unusually low flow-weighted nitrate concentrations (appro...
متن کاملRegional nitrate and pesticide trends in ground water in the eastern San Joaquin Valley, California.
Protection of ground water for present and future use requires monitoring and understanding of the mechanisms controlling long-term quality of ground water. In this study, spatial and temporal trends in concentrations of nitrate and pesticides in ground water in the eastern San Joaquin Valley, California, were evaluated to determine the long-term effects of agricultural and urban development on...
متن کاملUsing Dual Isotopes and a Bayesian Isotope Mixing Model to Evaluate Nitrate Sources of Surface Water in a Drinking Water Source Watershed, East China
A high concentration of nitrate (NO3) in surface water threatens aquatic systems and human health. Revealing nitrate characteristics and identifying its sources are fundamental to making effective water management strategies. However, nitrate sources in multi-tributaries and mix land use watersheds remain unclear. In this study, based on 20 surface water sampling sites for more than two years’ ...
متن کاملNavigating the socio-bio-geo-chemistry and engineering of nitrogen management in two illinois tile-drained watersheds.
Reducing nitrate loads from corn and soybean, tile-drained, agricultural production systems in the Upper Mississippi River basin is a major challenge that has not been met. We evaluated a range of possible management practices from biophysical and social science perspectives that could reduce nitrate losses from tile-drained fields in the Upper Salt Fork and Embarras River watersheds of east-ce...
متن کاملThe impact of fertilization and hydrology on nitrate fluxes from Mississippi watersheds
The watersheds of the Mississippi are some of the most intensively managed agricultural basins in the world. As such, they receive high loadings of nitrogen and export a large amount of nitrate to the drainage networks of the Mississippi River basin and coastal ocean. We find a positive correlation between fertilizer input and stream export of nitrogen. According to the correlation, 34% of appl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of environmental quality
دوره 32 6 شماره
صفحات -
تاریخ انتشار 2003